26/Sept./2017

Set - A

FIRST TERM EXAMINATION (26 SEPT 2017) MATHEMATICS

Class - IX

Time Allowed: 3 hours

Maximum Marks: 80

	1.	
	SECTION-A	
	Question numbers 1 to 6 carry one mark each	
1	How many zeroes does cubic polynomial has?	1
2	Find the point whose ordinate is -3 and which lies on $y-axis$	1
3	It is known that if $a = 2b, c = 2b$ then $a = c$. Which Euclid's axiom illustrates this statement. Write the statement of axiom used.	1
4	What are the shapes of boundaries of surfaces?	1
5.	Can a triangle have two obtuse angles? Give reason.	1
6.	It is given that $\triangle ABC \cong \triangle DEF$. Is it true to say AB = EF? Justify your answer.	1
	SECTION-B Question numbers 7 to 12 carry two marks each.	
7.	Express $0.3\overline{57}$ in p/q from where p & q are integers and $q \neq 0$.	2
8.	Find the value of k for which $(x-1)$ is a factor of polynomial $p(x) = x^3 + kx^2 + 142x - 120$	2
9.	If $a=2+\sqrt{3}$ find $a-\frac{1}{a}$	2
10.	Plot the points A (5, 5) and B (-5, 5) in cartesian plane. Join AB, OA and OB. Name the type of triangle so obtained.	2
11.	In given figure $l \parallel m$, find x	2
	400	
12.	If area of an equilateral triangle is $36\sqrt{3}cm^2$. Find its height.	2
	SECTION-C	
	Question numbers 13 to 21 carry three marks each.	
13.	Represent $\sqrt{8.5}$ geomatrically	3
14.	Simplify $\frac{8^{1/3} \times 16^{1/3}}{(22)^{-1/3}}$	3

The given figure represents a metal plate in 15. the form of a trapezium. Calculate the area of the plate in square centimeters correct to one place of decimal.

If x-y=5, xy=84. Find the value of x^3-y^3 16.

3

3

- A(3, 6), B (3, 2) and C (8, 2) are the vertices of a rectangle. Plot these points on a graph paper 3 17. and then find the coordinates of vertex D.
- AC=XD, C is the midpoint of AB and D 18. is the midpoint of XY. Using Euclid's axiom show AB = XY.

Prove that vertically opposite angle are equal, if two lines intersect each other. 19.

3

- AB is a line segment. P and Q are points on opposite sides of AB such that each of them is 3 20. equidistant from the points A and B. Show that the line PQ is perpendicular bisector of AB.
- Solve the equation 2x+1=x-3 and represent the solution on 21.

i) the number line (ii) the Cartesian plane

3

SECTION-D

Question numbers 22 to 30 carry four marks each.

If $\frac{\sqrt{7}-1}{\sqrt{7}+1} - \frac{\sqrt{7}+1}{\sqrt{7}-1} = a + b\sqrt{7}$ then find a and b. 22.

a) Verify that $x^3 + y^3 + z^3 - 3xyz = \frac{1}{2}(x+y+z)[(x-y)^2 + (y-z)^2 + (z-x)^2]$ 23.

2+2

b) Factorise $(x-y)^3 + (y-z)^3 + (z-x)^3$

Factorise $2x^3 - 3x^2 - 17x + 30$ 24.

25. $AB \parallel CD, \angle BDC = 40^{\circ} \text{ and } \angle BAD = 75^{\circ}$ Find x, y, z

26. The sides QR of $\triangle PQR$ is produced to point S. If bisectors of $\angle PQR$ and $\angle PRS$ meet at point T. Then prove that $\angle QTR = \frac{1}{2} \angle QPR$

et.

27. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR .

i) $\triangle ABM \cong \triangle PQN$

Show that

ii) $\triangle ABC \cong \triangle PQR$

- Find the area of a triangular field, the length of whose sides are 90m, 120m and 150m. Also calculate the cost of levelling the field at the rate of Rs. 12.50 per sq. m.
- 29. The taxi fare in a city is as follows: For the first kilometer, the fare is Rs. 20 and for the subsequent distance it is Rs. 6 per km. Taking x km as the distance covered and Rs. y as the total fare, write an linear equation and draw its graph.
- 30. Factorise i) $x^4 625$ ii) $x 8xy^3$

2+2